Sep 8-10:27 AM

1-2 Function Analysis

Learning Objectives:

- I can find the domain and range of a function.
- I can classify functions as even, odd, or neither.
- I can find the composite function involving two functions.
- I can find the inverse of a function.
- I understand the graphical relationship between a function and its inverse
- I can graph linear, power, absolute value, piecewise and step functions.

Sep 4-9:20 AM

Mar 29-10:33 AM

Mar 29-10:32 AM

Ex2. Graph each function. Identify the domain and range.

1.
$$y = x^2$$

2.
$$y = \frac{1}{x}$$

3.
$$y = \sqrt{x-3}$$

Use a graphing calculator to find the domain and range and important points (maxima, minima, intercepts):

Sep 8-12:16 PM

Composite of Functions

$$f(x) = x^2$$
$$g(x) = x - 5$$

$$f \circ g = f(g(x)) = (x-5)^2$$

 $g \circ f = g(f(x)) = x^2 - 5$

Sep 4-9:20 AM

Ex1. Given f(x) and g(x), find $f \circ g$ and $g \circ f$ and state the domain and

range of each $\frac{1}{x}$ -3 \geq 0 $x = \frac{1}{3}$ D: (0, $\frac{1}{3}$] $\frac{1}{x} \geq 3$ $\frac{1}{2} \leq x \approx 2$ $\frac{1}{3} \approx 2$

$$f(x) = \sqrt{x-3} \text{ D: } x \ge 3 \qquad \text{f(g(x))} = \sqrt{\left(\frac{1}{X}\right) - 3}$$

$$g(x) = \frac{1}{x} \quad \mathbf{D} : \mathbf{x} \neq \mathbf{0}$$

$$g(f(x)) = \frac{1}{\sqrt{x-3}}$$

$$0: x=3$$

$$1: y=0$$

Sep 4-9:20 AM

Even/Odd Functions

A function is an Even Function

if f(-x) = f(x) for all x

A function is an **Odd Function**

if f(-x) = -f(x) for all x

Sep 4-9:20 AM

Ex2. Decide if the given function is even, odd, or neither

1.
$$f(x) = |x|$$

3.

Homework

pg 19 # 6, 7, 9, 12, 16, 20, 31-34, 41, 46 pg 19 # 21 - 30, 37 - 40, 50 - 52, 56

Learning Objectives:

- I can find the domain and range of a function.
- I can classify functions as even, odd, or neither.
- I can find the composite function involving two functions.
- I can find the inverse of a function.
- I understand the graphical relationship between a function and its
- I can graph linear, power, absolute value, piecewise and step functions.

Sep 12-1:15 PM

Inverses

To find the inverse of a function, switch the x and y and solve for y.

Ex3. Find the inverse

$$y = f(x) = x^{2} + 4x + 4$$

$$x = y^{2} + 4y + 4$$

$$x = (y+2)^{2}$$

$$y + 2 = \pm \sqrt{x}$$

$$y = -2 \pm \sqrt{x}$$

$$y = x^{2} + 4x + 9$$

$$x = y^{2} + 4y + 9$$

$$x + x - 9 = y^{2} + 4y + \frac{4}{x}$$

$$x - 5 = (y+2)^{2}$$

Sep 4-9:20 AM

Now graph y = f(x) and $y = f^{-1}(x)$ on the same axes.

Sep 4-9:20 AM

If f(x) and $f^{-1}(x)$ are inverses, then $f \circ f^{-1}(x) = f^{-1} \circ f(x) = x$

$$f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

Sep 4-9:20 AM

For example:
$$f(x) = x^2$$
 $f^{-1}(x) = \sqrt{x}$

$$(\sqrt{x})^2 = \sqrt{(x^2)} = x$$

Learning Objectives:

- I can find the domain and range of a function.
- I can classify functions as even, odd, or neither.
- I can find the composite function involving two functions.
- I can find the inverse of a function.
- I understand the graphical relationship between a function and its
- I can graph linear, power, absolute value, piecewise and step functions.